Longitudinal Effects of Violent Video Games on Aggression in Japan and the United States
Pediatrics 2008;122:e1067-e1072
DOI: 10.1542/peds.2008-1425

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.pediatrics.org/cgi/content/full/122/5/e1067
Longitudinal Effects of Violent Video Games on Aggression in Japan and the United States

Craig A. Anderson, PhDa, Akira Sakamoto, PhDb, Douglas A. Gentile, PhDa,c, Nobuko Ihori, MAb, Akiko Shibuya, MAa, Shintaro Yukawa, PhDe, Mayumi Naito, PhDd, Kumiko Kobayashi, MAb

aCenter for the Study of Violence, Department of Psychology, Iowa State University, Ames, Iowa; bGraduate School of the Humanities and Sciences, Ochanomizu University, Tokyo, Japan; cGraduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; dFaculty of Economics, Takasaki City University of Economics, Takasaki, Japan.

The authors have indicated they have no financial relationships relevant to this article to disclose.

\begin{tabular}{|l|}
\hline
\textbf{What’s Known on This Subject} \\
Experimental studies have shown that playing violent video games causes a short-term increase in aggressive thoughts, feelings, and behavior. Cross-sectional studies show positive correlations between habitual violent video game play and both mild and severe forms of physical aggression.
\hline
\textbf{What This Study Adds} \\
We provide the first test of longer-term violent video game effects on aggression cross-culturally. The obtained longitudinal effects in American and Japanese youth samples confirm that playing violent video games is a significant causal risk factor for later aggression.
\hline
\end{tabular}

ABSTRACT

CONTEXT. Youth worldwide play violent video games many hours per week. Previous research suggests that such exposure can increase physical aggression.

OBJECTIVE. We tested whether high exposure to violent video games increases physical aggression over time in both high- (United States) and low- (Japan) violence cultures. We hypothesized that the amount of exposure to violent video games early in a school year would predict changes in physical aggressiveness assessed later in the school year, even after statistically controlling for gender and previous physical aggressiveness.

DESIGN. In 3 independent samples, participants’ video game habits and physically aggressive behavior tendencies were assessed at 2 points in time, separated by 3 to 6 months.

PARTICIPANTS. One sample consisted of 181 Japanese junior high students ranging in age from 12 to 15 years. A second Japanese sample consisted of 1,050 students ranging in age from 13 to 18 years. The third sample consisted of 364 United States 3rd-, 4th-, and 5th-graders ranging in age from 9 to 12 years.

RESULTS. Habitual violent video game play early in the school year predicted later aggression, even after controlling for gender and previous aggressiveness in each sample. Those who played a lot of violent video games became relatively more physically aggressive. Multisample structure equation modeling revealed that this longitudinal effect was of a similar magnitude in the United States and Japan for similar-aged youth and was smaller (but still significant) in the sample that included older youth.

CONCLUSIONS. These longitudinal results confirm earlier experimental and cross-sectional studies that had suggested that playing violent video games is a significant risk factor for later physically aggressive behavior and that this violent video game effect on youth generalizes across very different cultures. As a whole, the research strongly suggests reducing the exposure of youth to this risk factor. *Pediatrics* 2008;122: e1067–e1072

**I N T H E L A T E 1980s, American children played video games ~4 hours per week.1 They now average 13 hours overall, with boys averaging 16 to 18 hours per week.2 Furthermore, 90\% of American children between the ages of 8 and 16 play video games at home.3 Children’s favorite games often are violent.4 Currently, of all games classified by the industry’s ratings group as appropriate for everyone aged 10 and older (E10+), >90\% contain violence.3 More than 75\% of teenaged gamers under 17 report playing
mature-rated video games (the most graphically violent type) despite industry-wide restrictions. In a recent “secret-shopper” study, >80% of attempts by underaged children to purchase a mature-rated video game from rental stores were successful.2 If playing violent video games has harmful effects on some portion of players, then the vast majority of American youth are highly exposed to an unnecessary risk factor.

The general public typically define “violent media” as only those television shows, films, and video games that include graphic images of blood and gore, but media violence researchers also include products without such images. Violent media are those that depict characters intentionally harming other characters who presumably wish to avoid being harmed. Thus, even children’s video games that lack depictions of blood and gore can, and frequently do, include violence. “Aggression” also is defined differently by behavioral scientists than by the general public. Social and developmental psychologists typically define “aggression” as behavior that is intended to harm another person who is motivated to avoid that harm. In other words, aggression is an act conducted by 1 person with the intent of hurting another person; it is not an emotion, thought, or intention. For most social and developmental scientists, “violence” is the most extreme form of physical aggression, specifically physical aggression that is likely to cause serious physical injury.

Past research on violent video games discovered consistent links to increased levels of aggression.6–7 Existing experimental studies demonstrate that playing a violent video game causes an immediate increase in aggressive behavior, aggressive thoughts, and aggressive emotions.6–8,9 Existing cross-sectional studies (ie, correlational studies that measure independent and dependent variables at 1 point in time) clearly link violent video game play to high levels of aggression and violence in real world contexts. They also rule out a number of noncausal explanations.10,11

However, establishing long-term causal effects of violent video games also requires longitudinal studies. Only 1 published longitudinal study with children has specifically examined longer-term effects of exposure to violent video games,10 and no studies have investigated longitudinal effects in low violence cultures.

Longitudinal studies have investigated violent television and media in general among children and adolescents,12–14 and have demonstrated their causal longitudinal impact. Furthermore, these studies suggest that the long-term impact of television violence is larger for children than for adolescents. Nonetheless, the interactive nature of video games (their capacity to reward and punish the player for various actions, their immersive qualities, the fact that the user is an enactor as well as an observer of aggression) means that research specifically focusing on longitudinal violent video game effects is badly needed.

METHODS

Participants
In the present research, 3 samples of male and female schoolchildren were assessed at 2 points in time. Two samples are from Japan (reanalysis of data from refs 15 and 16); and 1 sample is from the United States.* Table 1 displays sample size and age ranges of the 3 samples. Although there are important developmental differences between middle childhood and adolescence,17 the psychological mechanisms postulated as underlying effects of violent media are the same for each age, such as priming processes; the learning of aggression-related scripts, attitudes, hostile attribution bias, and normative beliefs; and emotional desensitization (see refs 10 and 18 for detailed descriptions of the short-term and long-term mechanisms).

Procedure
For all participants, we assessed how much they habitually played violent video games, and how physically aggressive they had behaved in recent months. Table 1 describes the 3 samples. The samples varied in grade

* A similar longitudinal analysis with several additional variables and fewer participants (because of missing data on these additional variables) was reported by Anderson et al in 2007.10

The sample used in the present study consisted of the 364 participants who were assessed with a 5- to 6-month interval and had complete data on the variables used in this study.

TABLE 1 Characteristics of the 3 Samples

<table>
<thead>
<tr>
<th>Country/Sample Size</th>
<th>Japan (N = 181)</th>
<th>Japan (N = 1050)</th>
<th>United States (N = 364)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range, y</td>
<td>12–15</td>
<td>13–18</td>
<td>9–12</td>
</tr>
<tr>
<td>Measure of habitual violent video game exposure</td>
<td>Average frequency of playing 5 violent video game genres</td>
<td>Violence of favorite genres × weekly amount</td>
<td>Violence of game × play frequency, average across 3 favorite games</td>
</tr>
<tr>
<td>Physical aggression measure</td>
<td>6-item trait physical aggression scale</td>
<td>1 item, frequency of physical aggression in the last month</td>
<td>Index of teacher, peer, and self-reports; current school year time frame</td>
</tr>
<tr>
<td>Time lag between first and second assessment</td>
<td>4 months</td>
<td>3–4 months</td>
<td>5–6 months</td>
</tr>
<tr>
<td>T_1vgv, T_1agg effects</td>
<td>Correlation, r</td>
<td>0.34</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Odds ratio</td>
<td>2.46</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>Longitudinal β</td>
<td>129</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>0.054</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>95% confidence interval</td>
<td>0.033–0.245</td>
<td>0.022–0.128</td>
</tr>
</tbody>
</table>

T_1vgv indicates time 1 HVGV habitual video game violence; T_1agg indicates time 1 physical aggression; T_2agg indicates time 2 physical aggression; β, longitudinal path weight with gender and time 1 physical aggression controlled.
level (from 3rd to 12th grades), time lag between the 2 assessments (3–6 months), measure of habitual video game violence exposure (HVGV), and measure of recent physical aggressiveness.

HVGV

Two of the studies (the younger Japanese sample and the US child sample) assessed HVGV in ways that fairly directly take into account violent content of favorite games and amount of time playing those violent games. The US sample listed their 3 favorite video games and then rated each on amount of violent content and on how frequently they played each of the 3 games. HVGV for this sample was computed by multiplying the violent content rating by the frequency of play for each listed game, then averaging the 3 scores. This has been the standard procedure for several years.19 The younger Japanese sample indicated how frequently they had played each of the 8 types of video games (fighting action, action, action role playing game, shooting, adventure, simulation, sports, puzzle). Based on previous content analyses of popular video games among Japanese children, HVGV was computed by averaging the frequency of play for the 5 types of games that are predominantly violent (fighting action, action, action role playing game, shooting, and adventure).

The third study assessed HVGV in a somewhat less direct way. Participants listed their most favorite game genre and 3 additional favorite genres, and reported how many hours per week they spent playing any type of video game. For each participant, we assigned a favorite genres violence score, which could range from 0 to 5. If their “most favorite” genre was a violent type, they received 2 points; if it was a nonviolent type they received a 0. For the remaining 3 favorites, they received an additional point for each that was a violent type of genre. We then multiplied the favorite genres violent score by the total number of hours per week spent playing video games.

Aggressive Behavior

For both Japanese samples, the measure of aggressive behavior was self-reported trait physical aggression. For the younger sample, a 6-item Japanese version of the Buss and Perry self-report measure asks about frequency of physically aggressive behaviors. This scale has been validated in a wide range of studies, including previous violent-media studies. For the older Japanese sample, a 1-item self-report measure of frequency of physical aggression (involving punching or kicking someone) in the last month. For the US sample, the measure of aggressive behavior was an index of teacher, peer, and self-reports of physical aggression, such as hitting, kicking, and getting into fights in the last year.

RESULTS

Despite the differences between samples in measures of HVGV, physical aggression, country, and age, each sample yielded statistically reliable positive correlations between time 1 HVGV and time 2 physical aggression of a magnitude that falls in the medium to large range for longitudinal predictors of physical aggression and violence (see Table 1). The weighted average longitudinal correlation across the 3 samples was: $r = 0.28$ (95% confidence interval = 0.26 to 0.31), $z = 11.65, P < .0001$. The corresponding odds ratio is 2.10. It is interesting to note that the largest of these lagged correlations was for the sample that (1) used the most direct measure of HVGV, (2) used multiple reports of aggressive behavior, (3) had the longest lag between the 2 measurement time periods, and (4) had the youngest participants (the US sample $r = 0.40$). The smallest correlation was from the sample with the least direct measure of HVGV, the shortest lag, a single-item measure of physical aggression, and the oldest participants ($r = 0.23$). These 2 correlations are significantly different from each other, $z = 2.79, P < .01$.

For our main analyses, we used the maximum likelihood structural equation procedures of the LISREL 8.5 statistical package to conduct a path analysis on the 3 correlation matrices.23 The first (baseline) model forced the estimated path weights linking the measured variables to be equal across the 3 samples. This model should yield the optimum fit if the variations in methods, ages, and sampled country have relatively little impact on the structure of the relations among the conceptual variables. However, if the longitudinal effect of HVGV on later aggression differs across samples, for example if it is stronger in the US than the Japanese samples, this base-

TABLE 2 Tests of Different Models of Long-Term Effects of Habitual Playing of Violent Video Games on Physical Aggression Assessed 3 to 6 Months Later, Controlling for Gender and Earlier Physical Aggressiveness

<table>
<thead>
<tr>
<th>Overall Fit</th>
<th>Baseline Model: 1 Estimate of T1vgv → T2agg</th>
<th>Independent Model: 3 Estimates of T1vgv → T2agg</th>
<th>United States vs Japan Model: 2 Estimates of T1vgv → T2agg</th>
<th>Age Model: 2 Estimates of T1vgv → T2agg</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2 / P =$</td>
<td>23.73/164</td>
<td>19.91/224</td>
<td>21.07/223</td>
<td>20.00/274</td>
</tr>
<tr>
<td>Model df</td>
<td>18</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Difference from the baseline model $\chi^2 (df)$</td>
<td>3.82 (2)</td>
<td>2.66 (1)</td>
<td>3.73 (1)</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>>0.10</td>
<td>>0.10</td>
<td><0.10</td>
<td></td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.0251</td>
<td>0.0213</td>
<td>0.0212</td>
<td>0.0181</td>
</tr>
<tr>
<td>NFI</td>
<td>0.982</td>
<td>0.985</td>
<td>0.984</td>
<td>0.985</td>
</tr>
<tr>
<td>CFI</td>
<td>0.996</td>
<td>0.997</td>
<td>0.997</td>
<td>0.998</td>
</tr>
</tbody>
</table>

T_{1vgv} indicates time 1 video game violence exposure; T_{2agg}, time 2 physical aggression; RMSEA, root-mean-square error of approximation; NFI, normed fit index; CFI, comparative fit index; df, degrees of freedom.
line model should not fit the data very well. This model also provides a baseline for comparative testing of additional hypotheses about the relative magnitude of the longitudinal effect of HVGV on later physical aggression. Table 2 displays the results.

The baseline model fit the data quite well, as indicated by the measures of fit in Table 2.† Table 2 presents 3 additional and slightly different models, each of which was tested to see whether it fit the data better than the baseline model. One model allowed an independent estimate of the HVGV longitudinal path weight (β) for each sample. These path weights were similar for the 2 samples with younger participants and better measures of HVGV and physical aggressiveness, larger than the path weight the third sample, as shown in the bottom row of Table 1. However, this model did not yield a significantly better fit than the baseline model, as shown by the nonsignificant χ² difference test in Table 2.

A second comparative model specifically tested the hypothesis that the longitudinal effect is larger for the US sample than for the 2 Japanese samples. The χ² fit test in Table 2 revealed that this model also was not significantly better than the baseline model.

A third model (labeled the “age model” in Table 2) tested the hypothesis that the older sample with the shorter lag and the weakest measures of HVGV and physical aggressiveness would yield a smaller longitudinal effect than the 2 younger samples (Japan: 7th through 9th grades, US: 3rd through 5th grades). This model yielded a fit that was somewhat better than the baseline model. The estimated HVGV longitudinal path for the 2 younger samples (B = 1.52) was larger than the corresponding path for the older sample (B = 0.75).

Figure 1 displays the results of this path analysis. As expected, the gender of participant strongly predicted HVGV and physical aggressiveness. Boys played more violent video games and were more physically aggressive than girls. Furthermore, physical aggressiveness at time 1 was an extremely good predictor of physical aggressiveness at time 2, consistent with much previous research that shows that the best predictor of future aggression is history of past aggression. Of primary importance, however, is the finding that across 2 very different cultures HVGV predicts physical aggression 3 to 6 months later, even after controlling for previous aggressiveness and gender. This result strongly supports the theory that playing violent video games is a causal risk factor for relative increases in later physical aggressiveness. The main alternative explanation of previous cross-sectional correlation studies, that the association between amount of violent video game play and physical aggressiveness is merely an artifact of “naturally” aggressive children preferring violent video games, is ruled out by the longitudinal design and analysis. By controlling for participants’ aggressiveness at time 1, these longitudinal results also control for the innate aggressiveness of the participants as well as other factors that influence trait aggressiveness.

DISCUSSION

This study adds 2 critical pieces of evidence on the issue of the potential aggression-enhancing effects of violent video games. First, it confirms that habitually playing violent video games leads to increases in physical aggression some months later in children and adolescents, relative to those who do not play violent video games. Second, it demonstrates that such longitudinal effects occur in highly individualistic cultures with high societal levels of physical aggression and violence (the United States), and in more collectivistic cultures with low levels of physical aggression and violence. That both cultures yielded significant longitudinal effects of approximately the same magnitude illustrates the power of violent video games to affect children’s developmental trajectories in a harmful way. These findings also further suggest that common social learning processes underlie media violence effects across cultures, and contradict another popular alternative hypothesis: that only highly aggressive children (either by nature, culture, or other socialization factors) will become more aggressive if repeatedly exposed to violent video games.

A third finding of importance was the trend of the longitudinal effect of video game violence to be larger in the younger samples. Of course, the younger 2 samples also had somewhat longer time lags and somewhat better measures of habitual exposure to video game violence and physical aggression, so it is not clear which of these sample differences contributed to this trend. Additional studies are needed in which the same measures are used with varying ages and longer time lags.

Of course, a short lag should theoretically make finding an effect of time 1 video game violence exposure on time 2 aggression (controlling for time 1 aggression) less likely, because aggressive behavior is generally fairly stable across time, especially across shorter time lags than longer ones. Therefore, it may be that the long-

†Generally, a structural model equation of this type is considered to fit the data well if the fit indexes are >0.95 (maximum possible is 1.00), if the overall χ² fit test yields a nonsignificant P value (>0.05) or if the root-mean-square error of approximation is <0.05 (minimum possible is 0.00).

FIGURE 1

Longitudinal model of long-term effects of habitual playing of violent video games on physical aggression assessed 3 to 6 months later, controlling for gender and earlier physical aggressiveness, combined across 1 US and 2 Japanese samples. The 2 path weights for the HVGV path to time 2 physical aggression (PA) are for the younger/older samples (P < .0001 and .01, respectively). All other paths were constrained to be equal across samples and are statistically significant at P < .0001. Path coefficients are standardized.
term effects of violent media exposure on later aggression and violence will be larger with longer time lags than were used in the present samples.

The study also is limited by the fact that the measures were not identical across samples. On the other hand, this fact also demonstrates the robustness of the violent video game effect across different measures of the same conceptual variables. In this way, the use of somewhat different measures of video game habits and of physical aggression in our 3 samples provides conceptual replication within this 1 study.

Additional research also is needed to examine underlying psychological mechanisms of longitudinal change. Although previous research suggests that exposure to violent models, in either the real world or in entertainment media, teaches a host of aggression-enhancing behavioral scripts, attitudes, and beliefs, these effects have been tested most directly in short-term studies. Similarly, future research should additional investigate the characteristics of violent games that may make some less harmful than others. For example, there is some evidence from television research that a focus on the pain and suffering of the victims of violence may reduce its harmful impact, whereas glamorizing the violent actions of attractive perpetrators may increase the harmful impact. Measures of video game exposure that more clearly distinguish among different types of violent video games may allow tests of these important theoretical and practical questions.

Youth violence is a public health issue in the United States, because it accounts for so many deaths. Only accidental injury consistently leads homicide as the cause of death of 1- to 24-year-olds. For those aged 10 to 24 years, homicide is the leading cause of death for blacks and the second leading cause for Hispanics. Finally, it is worth noting that in 2005, 12- to 20-year-olds committed 28% of the single-offender and 41% of the multiple-offender violent crimes in the United States despite comprising only 13% of the population.

Even so, such extreme violence is relatively rare in the age groups we studied (relative to milder forms of physical aggression). Thus, longitudinal studies of extreme violence will require much larger sample sizes (eg, 25,000) and much longer time periods (eg, 20–30 years). But because physical aggressiveness in youth is 1 of the largest risk factors for later violence, an understanding of factors that increase (or decrease) youth aggression is vitally important if we are to understand and reduce violence in modern society. Previous experimental studies have clearly shown causal mechanisms by which violent video games can lead to long-term changes in aggressive personality. Cross-sectional studies have repeatedly linked habitual video game violence to mild and severe forms of physical aggression while ruling out plausible alternative explanations. The present study fills an import gap in the literature by confirming, with longitudinal data, previous empirical and theoretical work suggesting that frequent playing of violent video games is an important causal risk factor for youth aggression.

ACKNOWLEDGMENTS
This work was supported by the National Institute on Media and the Family; Centers for Disease Control and Prevention; the Laura Jane Musser Fund; and the Broadcasting Policy Division in the Information and Communications Policy Bureau at the Ministry of Public Management, Home Affairs, Posts, and Telecommunications in Japan.

We thank Frederick O. Lorenz for statistical assistance.

REFERENCES
17. Gentile DA, Sesma A. Developmental approaches to under-
Longitudinal Effects of Violent Video Games on Aggression in Japan and the United States

Pediatrics 2008;122:e1067-e1072
DOI: 10.1542/peds.2008-1425